STEP II - Poisson Distribution

Probability distributions

Know, understand and use the Poisson distribution; find probabilities using the Poisson distribution.

Calculate the mean and variance of the Poisson distribution.

Q1, (STEP II, 2005, Q13)

The number of printing errors on any page of a large book of N pages is modelled by a Poisson variate with parameter λ and is statistically independent of the number of printing errors on any other page. The number of pages in a random sample of n pages (where n is much smaller than N and $n \ge 2$) which contains fewer than two errors is denoted by Y. Show that $P(Y = k) = \binom{n}{k} p^k q^{n-k}$ where $p = (1 + \lambda)e^{-\lambda}$ and q = 1 - p.

Show also that, if λ is sufficiently small,

- (i) $q \approx \frac{1}{2}\lambda^2$;
- (ii) the largest value of n for which $P(Y = n) \ge 1 \lambda$ is approximately $2/\lambda$;
- (iii) $P(Y > 1 \mid Y > 0) \approx 1 n(\lambda^2/2)^{n-1}$.

Q2, (STEP II, 2007, Q14)

The discrete random variable X has a Poisson distribution with mean λ .

- (i) Sketch the graph $y = (x + 1)e^{-x}$, stating the coordinates of the turning point and the points of intersection with the axes.
 - It is known that $P(X \ge 2) = 1 p$, where p is a given number in the range 0 . $Show that this information determines a unique value (which you should not attempt to find) of <math>\lambda$.
- (ii) It is known (instead) that P(X = 1) = q, where q is a given number in the range 0 < q < 1. Show that this information determines a unique value of λ (which you should find) for exactly one value of q (which you should also find).
- (iii) It is known (instead) that $P(X = 1 | X \le 2) = r$, where r is a given number in the range 0 < r < 1. Show that this information determines a unique value of λ (which you should find) for exactly one value of r (which you should also find).

Q3, (STEP I, 2010, Q13)

The number of texts that George receives on his mobile phone can be modelled by a Poisson random variable with mean λ texts per hour. Given that the probability George waits between 1 and 2 hours in the morning before he receives his first text is p, show that

$$pe^{2\lambda} - e^{\lambda} + 1 = 0.$$

Given that 4p < 1, show that there are two positive values of λ that satisfy this equation.

The number of texts that Mildred receives on each of her two mobile phones can be modelled by independent Poisson random variables with different means λ_1 and λ_2 texts per hour. Given that, for each phone, the probability that Mildred waits between 1 and 2 hours in the morning before she receives her first text is also p, find an expression for $\lambda_1 + \lambda_2$ in terms of p.

Find the probability, in terms of p, that she waits between 1 and 2 hours in the morning to receive her first text.

Q4, (STEP II, 2013, Q12)

The random variable U has a Poisson distribution with parameter λ . The random variables X and Y are defined as follows.

$$X = \begin{cases} U & \text{if } U \text{ is } 1, 3, 5, 7, \dots \\ 0 & \text{otherwise} \end{cases}$$

$$Y = \begin{cases} U & \text{if } U \text{ is } 2, 4, 6, 8, \dots \\ 0 & \text{otherwise} \end{cases}$$

(i) Find E(X) and E(Y) in terms of λ , α and β , where

$$\alpha = 1 + \frac{\lambda^2}{2!} + \frac{\lambda^4}{4!} + \cdots$$
 and $\beta = \frac{\lambda}{1!} + \frac{\lambda^3}{3!} + \frac{\lambda^5}{5!} + \cdots$

(ii) Show that

$$Var(X) = \frac{\lambda \alpha + \lambda^2 \beta}{\alpha + \beta} - \frac{\lambda^2 \alpha^2}{(\alpha + \beta)^2}$$

and obtain the corresponding expression for Var(Y). Are there any non-zero values of λ for which Var(X) + Var(Y) = Var(X + Y)?

Q5, (STEP I, 2015, Q12)

The number X of casualties arriving at a hospital each day follows a Poisson distribution with mean 8; that is,

$$P(X = n) = \frac{e^{-8}8^n}{n!}, \quad n = 0, 1, 2, \dots$$

Casualties require surgery with probability $\frac{1}{4}$. The number of casualties arriving on any given day is independent of the number arriving on any other day and the casualties require surgery independently of one another.

- (i) What is the probability that, on a day when exactly n casualties arrive, exactly r of them require surgery?
- (ii) Prove (algebraically) that the number requiring surgery each day also follows a Poisson distribution, and state its mean.
- (iii) Given that in a particular randomly chosen week a total of 12 casualties require surgery on Monday and Tuesday, what is the probability that 8 casualties require surgery on Monday? You should give your answer as a fraction in its lowest terms.

Q6, (STEP II, 2017, Q12)

Adam and Eve are catching fish. The number of fish, X, that Adam catches in a fixed time interval T has a Poisson distribution with parameter λ . The number of fish, Y, that Eve catches in the same time interval has a Poisson distribution with parameter μ . The two Poisson variables are independent.

- (i) By considering P(X+Y=r), show that the total number of fish caught by Adam and Eve in time T also has a Poisson distribution.
- (ii) Given that Adam and Eve catch a total of k fish in time T, where k is fixed, show that the number caught by Adam has a binomial distribution.
- (iii) Given that Adam and Eve start fishing at the same time, find the probability that the first fish is caught by Adam.
- (iv) You are now given that, for a Poisson distribution with parameter θ , the expected time from any starting point until the next event is θ^{-1} .

Find the expected time from the moment Adam and Eve start fishing until they have each caught at least one fish.